免费看日韩av,一道精品视频一区二区三区图片,免费人成视频在线播放,亚洲一区二区三区四区在线播放

服務熱線全國服務熱線:

0551-63365630

當前位置:首頁 > 新聞中心 > 行業新聞 > 化學家破譯水分解密碼,解鎖氫燃料生產隱藏能量屏障

新聞中心

化學家破譯水分解密碼,解鎖氫燃料生產隱藏能量屏障

一、氫能產業加速:清潔燃料的未來之星


1.1 氫能發展現狀與挑戰

在全球能源轉型的大背景下,氫能作為一種清潔、高效、可持續的能源載體,正逐漸成為能源領域的焦點。它被譽為 “終極清潔能源”,燃燒產物僅為水,對環境零污染,且能量密度高,是傳統化石燃料的理想替代品。近年來,全球氫能產業發展迅猛,2023 年全球氫氣產量首次突破 1 億噸,同比增長 7.0%,這一數據彰顯了氫能在能源結構中的地位日益重要。

中國作為全球最大的制氫國,在氫能領域的發展更是成績斐然。2023 年我國氫氣實際產量超過 3570 萬噸,占據全球產量的三分之一,主要產自西北、華東和華北地區。在制氫技術方面,我國已掌握了多種制氫方式,包括煤制氫、天然氣制氫、工業副產氫和電解水制氫等。其中,煤制氫憑借我國豐富的煤炭資源和成熟的技術工藝,占據了總產能的 54.7%,達 2709 萬噸;天然氣制氫和工業副產氫產能分別為 1090 萬噸和 1030 萬噸。然而,不可忽視的是,目前我國化石燃料制氫占比超 90%,這意味著在制氫過程中會產生大量的碳排放,與 “雙碳” 目標背道而馳。

為了實現能源的可持續發展,電解水制綠氫成為了未來的發展方向。電解水制氫是利用可再生能源(如太陽能、風能、水能等)產生的電力,將水電解為氫氣和氧氣,整個過程不產生碳排放,真正實現了綠色制氫。2023 年中國電解水設備出貨量同比增長 53.4%,顯示出行業的快速發展態勢。但目前該技術仍面臨效率瓶頸,導致制氫成本居高不下。據相關數據顯示,當前電解水制氫的成本約為 34 元 / 千克,遠高于化石燃料制氫的成本,這使得電解水制氫在市場競爭中處于劣勢,限制了其大規模應用。

1.2 中國氫能產業鏈布局

為了推動氫能產業的發展,我國在氫能產業鏈的布局上可謂不遺余力。北京大興氫能示范區便是一個典型的例子,這里已構建涵蓋氫能制、儲、運、加、用全產業鏈,落地氫能企業已達 228 家,形成了產業聚集效應。美錦氫能總部、國電投氫能等一批重點項目相繼建成投產,新增推廣燃料池汽車 626 輛,氫能重卡完成全國首距離測試,建立 7 條京津冀跨區域氫能運輸示范線,打通了北京氫能運輸 “出海” 通道。大興區氫能示范區已被評選為國家級 “綠色低碳示范園區”,形成了 “5 + 12 + N” 氫能企業培育發展體系,核心技術覆蓋氫能全產業鏈,共同推動氫能產業加速創新發展。

山西沁源則依托當地豐富的風光資源,積極打造綠氫基地。山西鵬飛集團與深圳赫美集團合作,投資 7 億元建設 120MW 光伏發電和年產 2000 噸綠氫項目,包括 120MW 光伏電站、水電解氫裝置、儲氫和氫氣充裝設施等。常源加氫綜合能源島項目是山西鵬飛集團在沁源的首個氫能項目,計劃建設 6 座綜合能源島,基本覆蓋區域內國省干線,目前能源島主體已完工。

預計 2025 年,區域內將投入 300 輛氫能重卡、30 輛氫能公交車,推動 “制儲輸用” 的氫能全鏈應用,助力實現能耗和碳排放 “雙控”。沁源縣還積極探索 “源網荷儲” 一體發展,以 120 萬千瓦的抽水蓄能電站項目為牽引,統籌推進 200 兆瓦獨立儲能、300 兆瓦光伏發電以及其他一系列大型能源項目的并網發電,為綠氫產業的發展提供穩定的能源支持。

盡管我國在氫能產業鏈布局上取得了一定的成果,但水分解效率不足導致成本居高不下的問題仍然突出。以電解水制氫為例,其成本主要由電力成本、設備成本和運維成本等構成。由于目前電解水技術的效率有限,使得制氫過程中消耗的電力較多,從而推高了成本。設備成本方面,關鍵設備如電解槽的價格昂貴,且使用壽命有限,進一步增加了制氫成本。成本問題已成為制約我國氫能產業發展的核心痛點,若不能有效解決,將難以實現氫能的大規模商業化應用。

二、水分解的隱藏能量屏障:氧氣生成的 “分子戲法”

2.1 理論與現實的鴻溝

水分解作為制取清潔氫燃料的重要途徑,從理論層面來看,其過程簡潔而優雅。根據電化學理論計算,水分解只需要 1.23 伏特的電壓,就能將水分解為氫氣和氧氣,這個過程在理想狀態下,能量的轉化效率可以達到很高。然而,在實際的水分解過程中,情況卻復雜得多。現實中,水分解需要的電壓高達 1.5 - 1.6 伏,這比理論值高出了不少。

這種理論與現實之間的能量缺口,一直是困擾科學家們的難題,也是阻礙水分解技術大規模應用的關鍵因素。西北大學的研究團隊經過深入研究,終于揭開了這個能量缺口背后的神秘面紗。原來,水分解過程中,會發生兩個半反應,分別是產生氫氣的半反應和產生氧氣的半反應。其中,產生氧氣的半反應難度較大,需要所有的反應條件都精準匹配,這就導致它最終消耗的能量比理論計算的要多得多。

為什么產生氧氣的半反應會如此困難呢?研究發現,在這個半反應中,水分子需要克服一個 “翻轉” 障礙。電極表面帶有負電荷,而水分子中的氫原子帶正電,氧原子帶負電。由于電荷的吸引作用,水分子會自然地將帶正電的氫原子朝向電極表面,而此時,電子從水中的氧原子到電極活性部位的轉移就會被阻止。為了讓電子能夠順利轉移,水分子必須發生 “翻轉”,使氧原子指向電極表面,這樣氫原子就不會阻礙電子的轉移了。但這個 “翻轉” 過程需要消耗額外的能量,這就是為什么實際水分解需要更高電壓的原因之一。

2.2 關鍵發現:pH 值調控與分子動力學

為了深入探究水分解過程中氧氣生成的機制,西北大學的科學家們采用了一系列先進的實驗技術和理論計算方法。他們利用富含鐵的礦物赤鐵礦作為電極,這種電極材料在水分解反應中具有良好的電化學性能。同時,Geiger 的實驗室制造了一種水 PR SHG 技術,這是一種非常強大的分析工具,能夠讓科學家們直接觀察電極表面上的水分子動力學過程,從而實時追蹤水分子在電極表面的行為變化。

通過實驗觀察和數據分析,科學家們有了一個重大的發現:水分子的 “翻轉” 行為與水的 pH 值密切相關。在不同的 pH 值條件下,水分子 “翻轉” 的難易程度有著顯著的差異。當處于較高的 pH 值環境,也就是堿性環境時,水分子翻轉的阻力較小。這是因為在堿性溶液中,存在著大量的氫氧根離子,這些離子會與電極表面的電荷相互作用,改變電極表面的電場分布,從而使得水分子更容易克服 “翻轉” 障礙。在這種情況下,電子從氧原子轉移到電極上的過程更加高效,水分解產生氧氣的半反應也能更順利地進行,整個水分解反應的效率得到了顯著提高。

相反,在較低的 pH 值環境,即酸性環境中,水分子翻轉變得更加困難,需要消耗更多的能量。這是因為酸性溶液中大量的氫離子會與水分子競爭電極表面的吸附位點,使得水分子難以按照所需的方式排列,從而增加了 “翻轉” 的能量成本。這種情況下,水分解產生氧氣的半反應速率會顯著降低,整個水分解過程變得緩慢且低效,這也很好地解釋了為什么現有催化劑在低 pH 條件下效率會驟降。

這一發現為優化水分解反應提供了新的思路和方向。通過合理調控反應體系的 pH 值,我們可以降低水分子 “翻轉” 的能量障礙,提高水分解的效率,從而降低清潔氫燃料的生產成本,為氫能的大規模應用奠定堅實的基礎。

三、突破路徑:從實驗室到產業升級

3.1 催化劑設計新思路

針對水分解過程中存在的能量屏障問題,科學家們在催化劑設計方面提出了全新的思路。傳統的催化劑在促進水分解反應時,往往存在效率低下的問題,無法有效降低水分子 “翻轉” 的能量障礙。而如今,研究人員通過對催化劑表面結構的深入研究,發現定制化的催化劑表面結構能夠極大地促進水分子的定向排列,從而顯著提高水分解的效率。

香港城市大學的研究團隊在這方面取得了重要突破。他們聚焦于金屬氧化物半導體釩酸鉍(BiVO4),這種材料對可見光及紫外光都有反應,被視為光電化學水分解過程中性能極高的光催化劑。然而,在實際應用中,低電壓下大量由光激發的電荷載流子無法被使用,導致能源流失,影響水分解的效能。研究團隊經過深入研究發現,“電子陷阱態” 及 “小極化子形成” 是導致電荷載流子傳輸不良的主要原因。

為了解決這一問題,研究團隊嘗試對釩酸鉍進行磷摻雜。實驗結果令人驚喜,摻雜磷質后的 “釩酸鉍光陽極” 電荷遷移率較一般釩酸鉍增強了 2.8 倍。在 0.6V 的低壓供電下,電荷分離效率提升至 80%,較原有高出 1.43 倍,而在 1.0V 供電下效率更是高達 99%。此外,摻磷的釩酸鉍還降低了極化子跳躍的能量屏障,抑制了電子陷阱形成,從而改善了電荷載流子傳輸,在 0.6V 供電下展現出破紀錄的 “光子電流轉換效率”,達至 2.21%。

這一研究成果為低成本綠氫生產提供了新的可能。通過優化催化劑的結構和組成,能夠在較低的電壓下實現高效的水分解反應,大大降低了制氫成本。未來,隨著對催化劑設計研究的不斷深入,有望開發出更多高效、低成本的催化劑,推動電解水制氫技術的大規模應用。

3.2 光伏 + 氫能協同發展

除了在催化劑設計上尋求突破,光伏與氫能的協同發展也成為了降低水分解電壓需求、提高 “綠電→綠氫” 轉化效率的重要途徑。太陽能作為一種取之不盡、用之不竭的清潔能源,將其與氫能相結合,能夠實現能源的高效轉換和存儲。

山西鵬飛集團投資 7 億元建設的 120MW 光伏發電制氫項目便是一個成功的范例。該項目規劃建設 120MW 光伏發電裝置,合理匹配建設水電解制氫裝置,并建設儲氫和氫氣充裝裝置及相關的配套公用工程及輔助生產設施,擬定生產綠氫 2000 噸 / 年。通過光伏發電為電解水制氫提供電力,實現了可再生能源的直接利用,大大降低了制氫過程中的碳排放。同時,該項目的建設也為當地的能源結構調整和可持續發展做出了積極貢獻。

日本信州大學的研究團隊開發的二步水裂解系統同樣展示了光伏與氫能協同發展的潛力。在這個系統中,一種光催化劑從水中產生氫,另一種催化劑產生氧。研究團隊通過運行一個 1076 平方英尺(100 平方米)的反應堆三年,成功地證明了這一概念。在真實的陽光下,該系統的太陽能轉換效率較模擬光水平提高了約 1.5 倍,模擬標準陽光下的效率最多為 1%,而在自然陽光下的效率接近 5%。

這些案例表明,將可再生能源與優化后的催化劑相結合,能夠有效降低水分解的電壓需求,提高 “綠電→綠氫” 的轉化效率。未來,隨著光伏技術和氫能技術的不斷進步,以及兩者協同發展模式的不斷完善,有望實現 “綠電→綠氫” 轉化效率的進一步突破,推動氫能產業進入快速發展的新階段,為全球能源轉型提供強大的動力支持。

四、氫能未來:從實驗室到 “氫經濟”

4.1 技術迭代與成本下降

隨著科技的不斷進步,PEM 電解槽去貴金屬化進程正在加速推進。上海電氣申請的制備 PEM 金屬雙極板防腐蝕復合涂層的方法和復合涂層專利,通過使用非貴金屬涂層,減少了貴金屬涂層的使用,為降低 PEM 電解槽成本提供了新的解決方案。荷蘭特溫特大學研究人員開發的用于 PEM 電解池電極的新型復合材料,由幾種地球豐富的元素組成,活性比單個化合物高出 680 倍,有望在無鉑等稀有貴金屬的情況下實現高效制氫 。這些技術突破,將有效降低 PEM 電解槽的成本,推動綠氫生產成本的下降。

光催化技術的進步也為綠氫成本降低帶來了希望。云南大學柳清菊教授團隊與英國倫敦大學學院唐軍旺教授團隊、華東師范大學黃榮教授團隊合作制備的新型光催化劑,分解水制氫量子效率高達 56%,為低成本綠氫生產開辟了新路徑。南開大學電子信息與光學工程學院教授羅景山課題組與英國劍橋大學、瑞士洛桑聯邦理工學院團隊,通過開發制備以 [111] 為主要晶體取向的多晶 Cu2O 光電極,實現了光電催化制氫性能的突破 。這些研究成果表明,光催化技術在提高水分解效率、降低制氫成本方面具有巨大潛力。

隨著這些技術的不斷迭代和完善,綠氫成本有望從當前的 6 美元 /kg 降至 2 美元以下。屆時,綠氫將在成本上與灰氫展開有力競爭,為大規模應用奠定堅實基礎。國家氫燃料電池質檢中心等基礎設施的不斷完善,也將為技術的落地提供保障。該中心位于大興國際氫能示范區,總建筑面積 5.7 萬平方米,具備全鏈條一站式檢測能力,能為企業提供研發標定、功能驗證、性能測試等服務,加速技術從實驗室走向市場的進程。

4.2 氫能生態構建

北京冬奧會的氫能示范項目,為氫能在交通領域的應用樹立了典范。賽事期間,816 輛氫燃料電池汽車投入使用,其中包括豐田的第二代 MIRAI 和氫能版中巴車柯斯達,以及福田的歐輝氫燃料客車等。這些車輛搭載的氫燃料電池發動機,如億華通的產品,展現出了良好的性能,為賽事提供了綠色、高效的運輸服務。這不僅是氫能在重大國際賽事中的首次大規模應用,也標志著氫能在交通領域的可行性得到了充分驗證。

長治市的 “源網荷儲” 一體化項目,則展示了氫能在工業和能源領域的應用潛力。該項目將電源、電網、負荷和儲能形成協同工作系統,優化新能源供應和需求平衡。其中,襄垣縣 “源網荷儲” 一體化項目總投資 129.47 億元,太平金燁 110 千伏輸變電工程已并網穩定運行,實現了新能源就近消納和調峰調頻電力平衡,預計可使襄垣經開區綠電占比 50% 以上。這一項目的實施,推動了傳統能源企業向綜合能源供應轉變,為打造綠色能源可持續發展樣板做出了積極貢獻。

未來,“氫能 + 儲能” 的組合將成為重構能源格局的重要力量。氫能具有能量密度高、清潔無污染的特點,而儲能技術則能解決氫能生產和使用過程中的間歇性問題,兩者結合,可實現能源的穩定供應和高效利用。在 “雙碳” 目標的引領下,氫能將在能源結構中扮演越來越重要的角色,助力全球能源向綠色、低碳轉型。我們應持續關注科技前沿,積極推動氫能技術的發展和應用,共同見證氫能時代的到來。

參考資料來源于:新京報 環球網 一點資訊 光明網等媒體的公開報道

https://baijiahao.baidu.com/s?id=1829665143360663231&wfr=spider&for=pc


CATALOGUE

新聞分類

0551-63365630
用手機掃描二維碼關閉
二維碼
皖ICP備17013550號皖公網安備34019002600663號
视频免费观看| 蜜桃视频一区二区| 国产精品国产亚洲精品看不卡15| 在线免费91| 国产mv久久久| 一二区在线观看| 国产在线精品一区二区| 女人裸体性做爰全过| 亚洲天堂a在线| 日本高清视频在线播放| 日本一二三区在线| 第一福利永久视频精品| 丝袜视频国产在线播放| 亚洲黄色一区二区三区| 国产精品美女久久久久久不卡 | 日韩在线网址| 精品国偷自产在线视频| 日本影音先锋电影| 国产高清在线不卡| 久久美女视频| 福利视频999| 成人教育av在线| 中文字幕欧美日韩在线不卡| 狠狠色2019综合网| 国产免费无遮挡| 在线日韩av观看| 麻豆蜜桃在线| 久久高清无码视频| 国内精品久久久久久影视8| 久久成人精品| 污视频在线看| 国产麻豆电影在线观看| 久久高清国产| 好吊日免费视频| 亚洲第一精品在线| 天天操夜夜拍| 2019中文字幕在线观看| 日韩欧美中文字幕电影| 中文字幕人妻一区二区三区在线视频| 日韩中文字幕无砖| 国产欧美久久久久| 成人aaaa| 成人三级做爰av| 首页欧美精品中文字幕| 中文字幕乱码一区二区 | 91久久精品国产91性色tv| 深夜福利在线看| 日韩精品一区二区在线视频| 亚洲18色成人| 四季av在线一区二区三区 | 国产精品自产自拍| 四虎国产成人永久精品免费| 成人免费福利视频| 久久久久美女| 影音先锋在线国产| 欧美tickling挠脚心丨vk| 热久久视久久精品18亚洲精品| 成人77777| 欧美又黄又嫩大片a级| 黄色成人91| 在线观看日本黄色| 亚洲日穴在线视频| 国产亚洲精品午夜高清影院| 韩剧1988免费观看全集| 亚洲不卡系列| 久久精品无码人妻| 欧美—级a级欧美特级ar全黄| 女同性一区二区三区人了人一| 久久久夜色精品| 欧美超级免费视 在线| 老司机凹凸av亚洲导航| 亚洲一区在线观| 欧美三级午夜理伦三级富婆| 久久乐国产精品| 白白色 亚洲乱淫| 黄色精品视频网站| 岛国在线免费| www.51色.com| 欧美日韩高清不卡| 婷婷电影在线观看| 五月天综合在线| 欧美剧在线观看| 国产欧美大片| 男人av资源站| 日韩欧美在线视频| 成年男女免费视频网站不卡| 国产二区视频在线播放| 欧美国产视频一区二区| 久久精品亚洲麻豆av一区二区| 男人天堂网在线| 国产白丝一区二区三区| 欧洲精品在线视频| 国产福利一区二区三区视频在线| 精品一区在线观看视频| 国产精品成熟老女人| 91在线观看高清| 美女视频在线免费| a级免费视频| 免费国产羞羞网站视频| 欧美自拍偷拍网| 在线观看av网页| 国产伦精一区二区三区| 免费在线观看麻豆视频 | 国产亚洲精品久久久优势| 五月天久久网站| 欧美性猛交xxxx免费看蜜桃 | 日韩少妇内射免费播放18禁裸乳| 久久久久久久av| 亚洲国产婷婷综合在线精品| 国产激情在线观看| 久草热在线观看| 麻豆一区二区三区在线观看| 国产一区二区黑人欧美xxxx| 男女在线视频| 国产午夜福利精品| 大陆av在线播放| 国产精品露出视频| 欧美精品国产精品日韩精品| 欧美一级黄色片| 亚洲精品福利视频网站| 久草中文综合在线| 欧美精品国产| 欧美日韩国产综合视频 | 日韩欧美一级在线播放| 黑人巨大猛交丰满少妇| 欧美人与性动交| 91麻豆精品一区二区三区| 狠狠综合久久av一区二区蜜桃 | 日本五十路在线| 国产裸体无遮挡| 国产又粗又猛又爽又黄的视频小说| 亚洲综合日韩欧美| 欧美中文在线视频| 欧美日韩在线免费| 老鸭窝毛片一区二区三区| 男操女在线观看| 亚洲国产综合av| 国产精品久久久久久久久久三级 | 国产精品久久久久久久久婷婷| 91爱视频在线| 日韩一区av在线| 日韩中文字幕国产精品| 亚洲精品99久久久久中文字幕| 亚洲大型综合色站| 中文一区在线播放| 91久久亚洲| 四虎影视国产在线视频| 国产片在线播放| 婷婷综合在线视频| 九一国产精品视频| 色综合色综合| 免费人成在线观看网站| 国产精品美女一区二区视频| 人妻精品久久久久中文字幕| 欧美激情小视频| 一区二区三区四区中文字幕| 国产成人精品一区二区免费看京| 日本韩国在线视频| 国产又大又黄的视频| 成人免费播放视频| 日本女人一区二区三区| 国产精品精品国产一区二区| 91精品国产66| www中文字幕在线观看| 国产日韩欧美一区二区三区视频| 性欧美videos| 日本美女xxx| 国产精品自拍视频在线| 国产又大又硬又粗| 天堂网成人在线| 日本黄色录像视频| 国产精品免费精品一区| 影音先锋一区二区资源站| 黄色激情视频网址| www天堂网| 毛片视频免费| 九色视频在线观看| 欧美成人禁片在线www| 少妇人妻偷人精品一区二区| 国产日韩在线视频| 亚洲成av人影院在线观看网| 国产精品一区二区你懂的| 一区二区电影在线观看| 日韩高清在线免费观看| 免费a级在线播放| 精品视频二区三区| 一区不卡在线观看| 97人妻精品一区二区免费| 一级黄色香蕉视频| 日本黄色录像视频| 欧美a视频在线观看| 国产女人18毛片水18精品| 日本精品免费观看高清观看| 亚洲欧美日韩系列| 国产亚洲精品资源在线26u| 国产精品无遮挡| 久久久精品黄色| 国产精品av一区二区| 成人羞羞网站入口| 99精品视频免费观看视频|